This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SYNTHESIS AND CRYSTAL STRUCTURE OF Δ, L-TRIS-METHYLENEBIS-[DIPHENYLPHOSPHINE OXIDE]NICKEL(II) DIPERCHLORATE METHANOL SOLVATE

Elena Bermejo^a; Alfonso Castiñeiras^a; Ricardo Domínguez^a; Christiane Schüle^a ^a Departmento de Química Inorgánica, Universidad de Santiago de Compostela, composa, Spain

To cite this Article Bermejo, Elena , Castiñeiras, Alfonso , Domínguez, Ricardo and Schüle, Christiane(1994) 'SYNTHESIS AND CRYSTAL STRUCTURE OF Δ , L-TRIS-METHYLENEBIS-[DIPHENYLPHOSPHINE OXIDE]NICKEL(II) DIPERCHLORATE METHANOL SOLVATE', Journal of Coordination Chemistry, 33: 4, 353 – 362

To link to this Article: DOI: 10.1080/00958979408024295

URL: http://dx.doi.org/10.1080/00958979408024295

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1994, Vol 33, pp. 353-362 Reprints available directly from the publisher Photocopying permitted by license only © 1994 OPA (Overseas Publishers Association) Amsterdam BV. Published under license by Gordon and Breach Science Publishers SA. Printed in Malaysia

SYNTHESIS AND CRYSTAL STRUCTURE OF Δ, L-TRIS-METHYLENEBIS[DIPHENYLPHOSPHINE OXIDE]NICKEL(II) DIPERCHLORATE METHANOL SOLVATE

ELENA BERMEJO, ALFONSO CASTIÑEIRAS,* RICARDO DOMÍNGUEZ and CHRISTIANE SCHÜLE

Departmento de Química Inorgánica, Universidad de Santiago de Compostela, E-15706 Santiago de Compostela, Spain

(Received June 7, 1994)

 Δ ,L-*Tris*-methylene*bis*[diphenylphosphine oxide]nickel(II) diperchlorate methanol solvate, Δ , [Ni(bppom)₃](ClO₄)₂·MeOH, was synthesized and its structure determined by single crystal X-ray diffraction at room temperature, and refined to a final R = 0.099 The structure consists of *quasi*-octahedral, tetragonally distorted, [Ni(bppom)₃]² + cations and perchlorate anions. One methanol molecule of crystallization per formula unit is present. The average Ni-O equatorial and axial distances are 2.075 Å and 2.185 Å respectively.

KEYWORDS: crystal structure, nickel complex, methylenebis(diphenylphosphine oxide), chiral complex

INTRODUCTION

Tetradentate and linear ligands with NSSN skeletons (where the sulphur atoms belong to thioether groups and nitrogen atoms to heterocycles such as pyridine,¹ imidazole,² etc.) interact with divalent transition metal salts of general formula $MX_2 \cdot nH_2O$ (M = Co, Ni or Cu, X = Cl, Br, I, NO₃ or ClO₄, n = 6) to form cationic complexes of stoichiometry $[M(L)(H_2O)_2]^{2+3}$ or $[M(L)(H_2O)X]^{+4}$ and neutral complexes $[M(L)X_2]^5$ (L = tetradentate ligand) in which the central metal ion is octahedrally coordinated by the tetradentate ligand through the two sulphur atoms in the *cis* equatorial positions and the two nitrogen atoms from the anions invariably occupy the other two *cis* equatorial positions. These complexes are good starting compounds to carry out replacement reactions in which they react with monodentate⁶ or bidentate ligands and also with bichelating tetradentate ligands such as oxalate or oxamide⁷ to give dinuclear species which may have unusual magnetic properties.

Downloaded At: 16:57 23 January 2011

^{*} Author for correspondence.

A well-known way of synthesising dinuclear complexes of transition metals involves using bidentate diphosphine ligands, particularly *bis*(diphenylphosphine)methane (dppm).⁸⁻¹² For this reason, this ligand was selected for the substitution reaction mentioned above and also because it contains two phosphorus donor atoms which are of similar size to the sulphur atoms, so that the probable geometry around each metal atom should be tetragonally-distorted octahedral with consequent alteration in ligand field properties due to the presence of different donor atoms. Diaqua[1,8-bis(2-pyridyl)-3,6-dithiaoctane-N,N',S,S']nickel(II) diperchlorate, [Ni(bpdto)(H₂O)₂](ClO₄)₂, the structure of which is known,^{13,14} was selected as the starting complex. However, reaction with the diphosphine ligand was found to give the complex [Ni(dppom)₃](ClO₄)₂, in which the phosphine ligand has been oxidised to methylene*bis*(diphenylphosphine oxide), dppom.

Although the reported coordination chemistry of dppom is not very extensive, a number of complexes of this ligand with main group¹⁵ and transition¹⁶ metals have been synthesized and characterized. The cation $[Ni(dppom)_3]^{2+}$ has been synthesized by heating $(260-270^{\circ}C)$ $[NiX_2(dppm)]$ in the presence of air.¹⁷ However, structural analysis by X-ray diffraction has only been reported for dppom¹⁸ itself and the complexes $[SnPh_2(dppom)(NO_3)_2]$,¹⁹ $[SnBu^n_2Cl_2(dppom)]$,²⁰ $(AlCl_3)_2(dppom)^{21}$ and $[Cu(dppom)_3][Cu_2Cl_6]$,²² as well as some derivatives of alkali metals.^{15a,23} In this paper, the reaction of $[Ni(bpdto)(H_2O)_2](ClO_4)_2$ with dppm at room temperature to produce the new chiral compound *tris*-methylene*bis*(diphenylphosphine oxide)nickel(II) diperchlorate methanol solvate, is described.

EXPERIMENTAL

Synthesis .

Initially, we intended to obtain the cation $[Ni(bpdto)(dppm)]^2$ + as a perchlorate by the reaction of $[Ni(bpdto)(H_2)_2](ClO_4)_2^{14}$ with dppm. However, the product obtained in every case was the *tris*-chelate $[Ni(dppom)_3](ClO_4)_2$.

A solution of bpdto (0.37 g, 1.2 mmol) in 20 cm³ of hot methanol was added, slowly with stirring, to a solution of Ni(ClO₄)₂·6H₂O (0.44 g, 1.2 mmol). The reaction mixture was cooled to room temperature and left stirring continuously for ten days. To this, dppm (0.5 g, 1.2 mmol) was added and stirring was continued for a further 15 days. The solid formed was then filtered, washed with small portions of methanol and air dried.

Crystal structure determination

Suitable crystals for X-ray diffraction were obtained by the slow evaporation and cooling of a methanolic solution of the filtered compound. Crystal data are shown in Table 1. Intensity data for a prismatic crystal with dimensions $0.20 \times 0.25 \times 0.40$ mm were measured at room-temperature, 293 K, on an Enraf-Nonius CAD4 diffractometer with graphite monochromatised MoK α radiation, $\lambda = 0.71073$ Å. The $\omega/2\theta$ scan technique was employed to measure the intensities for 9594 reflections up to a maximum Bragg angle of 28°. Cell parameters were refined by a least-squares procedure on setting angles of 25 reflections ($7.8 \le \theta \le 12.0^{\circ}$).²⁴ No decomposition of the crystal occurred during data collection. Corrections were

Molecular formula	$C_{76}H_{70}Cl_2NiO_{15}P_6$
Formula mass	1538.86
Crystal system	Triclinic
Space group	$P\overline{1}$
a(Å)	15.856(2)
b(Å)	17.964(1)
c(Å)	14.515(1)
$\alpha(\circ)$	111.07(1)
$\beta(\circ)$	101.05(1)
γ(°)	93.73(1)
$\hat{V}(A^3)$	3745.8(6)
Z	2
$D_{\rm y} ({\rm g} {\rm cm}^{-1})$	2.729
F(000)	3192

Table 1 Crystal data for $[Ni(dppom)_3](ClO_4)_2 \cdot MeOH$.

applied for Lorenz and polarization effects and for absorption ($\mu = 1.037 \text{ mm}^{-1}$).²⁵ A total of 9594 reflections were collected, of which 8204 were unique ($R_{int} = 0.023$), and of these 4924 satisfied the $I \ge 3.0\sigma$ (I) criterion of observability and were used in the subsequent analysis.

The structure was solved by direct-methods²⁶ and refined by a full-matrix least-squares procedures based on F.²⁴ Ni and all O-P-C-P-O atoms were refined with anisotropic displacement parameters, the remaining isotropically. Hydrogen atoms were constrained to idealized positions (C-H = 0.95 Å) and included in structure factor calculations with fixed isotropic B values ($B_{eq} = 5.0 Å^2$), but not refined. The weighting scheme of the form, $w = 1/\sigma^2(F)$ was introduced and the refinement proceeded smoothly to convergence with a maximum Δ/σ of 0.001 when R = 0.099, $R_w = 0.102$ and GOF = 4.163 (Goodness-of-Fit) for 482 variables. Correction for extinction was made in the last cycle of refinement.²⁷ Secondary extinction coefficient was refined to $g = 3.036 \times 10^{-8} \{F_c = F_c/[1 + g(F_c)^2L_P]\}$. Analysis of variance showed no special features and the maximum and minimum residual electron density peaks in the final difference map were + 1.40 and - 1.02 eÅ⁻³, respectively. Impossibility of refinement with anisotropic displacement factors for all non-hydrogen atoms, slight disorder in the atoms of some phenyl groups, and considerable disorder in the atoms of the perchlorate anions and the atoms of the methanol crystallization molecule may cause the high R value.

Atomic scattering factors and anomalous dispersion corrections for all atoms were taken from *International Tables for X-ray Crystallography*.²⁸ Fractional atomic coordinates are listed in Table 2 and a *SCHAKAL* drawing²⁹ of the cation $[Ni(dppom)_3]^{2+}$ with the atom labelling scheme is shown in Figure 1.

RESULTS AND DISCUSSION

The title compound is formed in the reaction of $[Ni(bpdto)(OH_2)_2](ClO_4)_2$ with dppm at room temperature. Unexpectedly, it was found that the ligand Ph_2P-CH_2-PPh_2 was oxidised and coordinated as dppom. A similar reaction occurred at temperatures around 250°C,²⁷ and also at room temperature, during the reaction of $[TcNCl_2(Me_2PhP)_3]$ with disulphur dichloride to produce $[Tc(NS)Cl_3(Me_2PhP)]$

Atom	x/a	y/b	z/c	B_{eq}^{a}
Complex cati	ion			
Ni	0.8007(1)	0.2976(1)	0.5892(2)	5.87(7)
P(11)	0.7245(2)	0.3172(2)	0.7904(3)	3.3(1)
P(12)	0.6304(4)	0.3826(2)	0.6396(3)	2.9(1)
P(21)	0.9881(2)	0.4160(2)	0.6792(3)	3.1(1)
P(22)	0.9889(2)	0.2423(2)	0.6606(3)	3.1(1)
P(31)	0.7364(2)	0.2457(2)	0.3405(3)	3.3(1)
P(32)	0.6537(2)	0.1421(2)	0.4352(3)	2.9(1)
O(11)	0.7984(5)	0.3128(4)	0.7456(6)	2.1(3)
O(12)	0.7011(5)	0.3653(4)	0.5829(7)	3.6(3)
O(21)	0.8910(4)	0.4024(4)	0.6444(7)	3.5(3)
O(22)	0.8990(5)	0.2291(4)	0.5972(7)	3.4(3)
O(31)	0.8001(5)	0.2818(5)	0.4329(6)	2.1(3)
O(32)	0.7093(5)	0.1940(4)	0.5376(7)	3.1(3)
C(1)	0.6224(7)	0.3195(6)	0.712(1)	3.0(4)
C(2)	1.0241(7)	0.3484(6)	0.741(1)	3.0(4)
C(3)	0.6377(7)	0.1959(7)	0.353(1)	3.2(4)
C(11)	0.7439(7)	0.4073(7)	0.901(1)	3.5(3)
C(12)	0.8203(8)	0.4583(7)	0.925(1)	4.3(3)
C(13)	0.8333(9)	0.5335(8)	1.002(1)	5.4(4)
C(14)	0.7734(9)	0.5565(8)	1.058(1)	4.9(3)
C(15)	0.6980(9)	0.5054(8)	1.038(1)	5.5(4)
C(16)	0.6834(9)	0.4303(8)	0.960(1)	4.8(3)
C(21)	0.7054(8)	0.2323(7)	0.826(1)	4.2(3)
C(22)	0.627(1)	0.213(1)	0.846(1)	7.1(4)
C(23)	0.614(1)	0.145(1)	0.870(2)	8.3(5)
C(24)	0.681(1)	0.103(1)	0.878(2)	8.8(6)
C(25)	0.755(1)	0.118(1)	0.857(2)	8.3(5)
C(26)	0.768(1)	0.1870(9)	0.830(1)	6.5(4)
C(31)	0.5263(7)	0.3613(7)	0.553(1)	3.5(3)
C(32)	0.4566(9)	0.3118(8)	0.550(1)	4.9(3)
C(33)	0.383(1)	0.2903(9)	0.469(1)	6.6(4)
C(34)	0.379(1)	0.3207(9)	0.400(1)	6.0(4)
C(35)	0.447(1)	0.371(1)	0.40191)	7.3(5)
C(36)	0.5221(9)	0.3919(8)	0.479(1)	5.6(4)
C(41)	0.6496(7)	0.4862(6)	0.725(1)	3.2(2)
C(42)	0.7196(8)	0.5359(7)	0.725(1)	4.2(3)
C(43)	0.7372(9)	0.6155(8)	0.793(1)	5.2(3)
C(44)	0.6877(9)	0.6449(8)	0.861(1)	5.1(3)
C(45)	0.6188(9)	0.5973(8)	0.864(1)	5.6(4)
C(46)	0.5973(8)	0.5157(8)	0.793(1)	4.7(3)
C(51)	1.0243(7)	0.5162(6)	0.772(1)	5.6(4)
C(52)	1.1110(8)	0.5524(8)	0.801(1)	4.7(3)
C(53)	1.1334(9)	0.6307(8)	0.873(1)	5.4(4)
C(54)	1.073(1)	0.6728(9)	0.912(1)	5.9(4)
C(55)	0.988(1)	0.6379(9)	0.885(1)	6.1(4)
C(56)	0.9637(9)	0.5585(8)	0.815(1)	4.7(3)
C(61)	1.0409(8)	0.4009(7)	0.577(1)	3.9(3)
C(62)	0.9914(9)	0.3969(8)	0.483(1)	5.1(3)
C(63)	1.030(1)	0.380(1)	0.401(1)	7.1(4)
C(64)	1.111(1)	0.369(1)	0.408(2)	8.0(5)
C(65)	1.162(1)	0.372(1)	0.494(1)	7.1(5)
C(66)	1.128(1)	0.3883(8)	0.585(1)	5.8(4)
C(71)	0.9976(8)	0.1890(7)	0.744(1)	4.0(3)

Table 2 Fractional positional parameters for the atoms in $[Ni(dppom)_3](ClO_4)_2 \cdot MeOH$ with e.s.d.s in parentheses; for numbering see Fig. 1.

Table 2 - Continued

Atom	x/a	y/b	z/c	B _{eq} ^a
C(72)	0.948(1)	0.1149(9)	0.708(1)	6.6(4)
C(73)	0.954(1)	0.069(1)	0.775(2)	7.7(5)
C(74)	1.008(1)	0.099(1)	0.863(2)	7.6(5)
C(75)	1.060(1)	0.171(1)	0.900(2)	7.7(5)
C(76)	1.054(1)	0.2164(9)	0.837(1)	6.0(4)
C(81)	1.0634(7)	0.2084(6)	0.582(1)	3.2(2)
$\hat{C}(82)$	1.0328(8)	0.1821(7)	0.480(1)	4.0(3)
C(83)	1.089(1)	0.1554(9)	0.413(1)	5.9(4)
C(84)	1.1754(9)	0.1558(9)	0.457(1)	4.9(3)
C(85)	1.2055(9)	0.1811(8)	0.560(1)	4.9(3)
C(86)	1,1503(8)	0.2083(7)	0.623(1)	4.3(3)
C(91)	0.6999(8)	0.3221(7)	0.296(1)	4.0(3)
C(92)	0.661(1)	0.3010(9)	0.195(1)	6 3(4)
C(93)	0.626(1)	0.361(1)	0.162(2)	7 7(5)
C(94)	0.623(1)	0.351(1)	0.230(1)	7 0(4)
C(05)	0.035(1)	0.459/(1)	0.328(1)	6 3(4)
C(95)	0.072(1)	0.3004(0)	0.320(1)	6.0(4)
C(101)	0.707(1)	0.3334(3) 0.1780(7)	0.301(1)	$\frac{0.0(4)}{2.0(2)}$
C(101)	0.7019(0)	0.1760(7)	0.247(1)	5.5(3)
C(102)	0.7307(9)	0.1070(8)	0.109(1)	$\frac{5.0(4)}{7.0(4)}$
C(103)	0.781(1)	0.058(1)	0.101(1)	7.0(4)
C(104)	0.803(1)	0.080(1)	0.109(1)	7.1(4)
C(105)	0.909(1)	0.1480(9)	0.181(1)	0.8(4)
C(106)	0.8688(9)	0.1908(8)	0.252(1)	5.4(4)
	0.7009(7)	0.0560(7)	0.3/3(1)	3.0(3)
C(112)	0.7893(9)	0.0601(8)	0.404(1)	5.1(3)
C(113)	0.829(1)	- 0.0061(1)	0.347(1)	7.0(4)
C(114)	0.779(1)	- 0.069(1)	0.269(1)	7.2(5)
C(115)	0.694(1)	- 0.0741(9)	0.242(1)	6.5(4)
C(116)	0.6520(9)	- 0.0108(8)	0.293(1)	5.0(3)
C(121)	0.5474(7)	0.1111(6)	0.450(1)	3.2(2)
C(122)	0.5409(8)	0.1106(7)	0.543(1)	3.8(3)
C(123)	0.4605(8)	0.0920(8)	0.560(1)	4.6(3)
C(124)	0.3897(9)	0.0708(8)	0.479(1)	4.8(3)
C(125)	0.3921(9)	0.0687(8)	0.386(1)	5.3(3)
C(126)	0.4738(9)	0.0897(8)	0.368(1)	4.8(3)
Perchlorate ani	ons			
Cl(1)	0.5986(3)	0.6917(3)	0.1805(4)	6.9(1)
O(1)	0.5775(7)	0.7586(6)	0.2638(9)	7.3(3)
O(2)	0.538(1)	0.627(1)	0.138(1)	15.7(6)
O(3)	0.673(1)	0.7104(9)	0.154(1)	12.0(5)
O(4)	0.646(1)	0.655(1)	0.241(2)	18.8(8)
Cl(2)	0.1838(3)	0.1335(3)	0.1602(4)	7.1(Ì)
0(5)	0.165(1)	0.208(1)	0.216(1)	15.4(6)
OÌÓ	0.109(1)	0.076(1)	0.126(1)	14.5(6)
O(7)	0.213(1)	0.140(1)	0.076(1)	15.2(6)
O(8)	0.245(2)	0.108(1)	0.209(2)	23.0(9)
Methanol solve	nt			
O(10)	0.430(2)	0.107(2)	0.118(2)	25.0(9)
C(10)	0.436(2)	0.164(2)	0.065(3)	20.0(9)
- (/				

^a B_{eq} is defined as $4/3[a^2B_{11} + b^2B_{22} + c^2B_{33} + ab(\cos \gamma)B_{12} + ...]$

Figure 1 Perspective view of [Ni(dppom)₃]²+ showing the atom numbering scheme.

 (Me_2PhPO)]³⁰ and of [ReOCl₃(Ph₃P)₂] with Me₃SiNCS to form [Re(NCS)₄ (Ph₃P) (Ph₃PO)].³¹

The geometry around the metal ion is *pseudo*-octahedral, similar to that typically found in *tris*-chelate metal complexes with bidentate ligands such as ethylenediamine, oxalate, acetylacetonate, *etc.* The peculiar helicoidal configuration of complexes of this type necessarily confers chiral properties. The important difference in this case is that the three six-membered chelate rings are not flat and have different conformations. While ring 1 adopts a boat conformation, rings 2 and 3 have a conformation lying between chair and twist-boat,³² although these two have opposite orientations. In Figure 2, the structure corresponding the Δ isomer is illustrated.

Table 3 provides a selection of bond lengths and angles for the Ni(II) coordination polyhedron. All angles are close to ideal, the larger deviations being those for O(11)-Ni-O(22) and O(22)-Ni-O(31), 88.0(4)° and 92.7(4)°, respectively. However, tetragonal distortion can be deduced from an analysis of Ni-O distances. Thus, the values in the range 2.059(8)-2.089(7) Å found for four of the distances are similar

Figure 2 Coordination sphere arrangement of the \triangle ion in the unit cell.

those found for other nickel-oxygen bonds for which the mean value is 2.05 Å.³³ However, the other two distances, Ni-O(11) and Ni-O(31), are well above the mean value. In $[Cu(dppom)_3]^{2+}$, the other known structure of the tris-chelate with a transition metal,²² each dppom ligand is coordinated to the copper giving a short Cu-O distance close to the above mean value and a long distance, which is between 0.10 and 0.25 Å above the mean value.

Structural data indicate that each of the three dppom molecules surrounding each phosphorus (Table 4) have similar bond distances and angles to those of dppom ¹⁸ and abovementioned complexes.^{15a,19-23} However, there are remarkable differences in some of the P-O distances, undoubtedly related to distortions described above. Thus, while in molecule 2 the P-O distances, 1.498(7) Å and 1.493(8) Å, coincide with those normally found for phosphine oxides,³² in the other two molecules one

Distances			
Ni-O(11)	2.194(9)	Ni-O(12)	2.063(8)
Ni-O(21)	2.089(7)	Ni-O(22)	2.059(8)
Ni-O(31)	2.181(9)	Ni-O(32)	2.087(7)
Angles			
O(11)-Ni-O(12)	91.1(4)	O(11)-Ni-O(21)	89.7(4)
O(11)-Ni-O(22)	88.0(4)	O(11)-Ni-O(31)	178.9(3)
O(11)-Ni-O(32)	88.9(3)	O(12)-Ni-O(21)	89.8(3)
O(12)-Ni-O(22)	178,9(4)	O(12)-Ni-O(31)	88.2(4)
O(12)-Ni-O(32)	89.6(3)	O(21)-Ni-O(22)	90.8(3)
O(21)-Ni-O(31)	91.2(4)	O(21)-Ni-O(32)	178.5(5)
O(22)-Ni-O(31)	92.7(4)	O(22)-Ni-O(32)	89.8(3)
O(31)-Ni-O(32)	90.2(3)		

Table 3 Coordination bond distances (Å) and angles (°) for $[Ni(dppom)_3](ClO_4)_2 \cdot MeOH$

Molecule I			
P(11)-O(11)	1.439(9)	P(12)-O(12)	1.489(7)
P(11)-C(1)	1.806(12)	P(12)-C(31)	1.814(15)
P(11)-C(11)	1.784(12)	P(12)-C(31)	1.792(10)
P(11)-C(21)	1.801(17)	P(12)-C(41)	1.793(17)
O(11)-P(11)-C(1)	115.8(7)	O(12)-P(12)-C(1)	112.3(6)
O(11)-P(11)-C(11)	109.1(5)	O(12)-P(12)-C(31)	110.7(6)
O(11)-P(11)-C(21)	116.6(6)	O(12)-P(12)-C(41)	110.1(5)
O(1)-P(11)-C(11)	106.2(6)	C(1)-P(12)-C(31)	105.2(6)
C(1)-P(11)-C(21)	105.4(7)	C(1)-P(12)-C(41)	108.5(7)
P(11)-C(1)-P(12)	114.2(7)	C(31)-P(12)-C(41)	109.8(5)
Molecule II			
P(21)-O(21)	1.498(7)	P(22)-O(22)	1.493(8)
P(21)-C(2)	1.814(15)	P(22)-C(2)	1.822(10)
P(21)-C(51)	1.792(10)	P(22)-C(71)	1.785(18)
P(21)-C(61)	1.793(17)	P(22)-C(81)	1.782(14)
O(21)-P(21)-C(2)	110.9(6)	O(22)-P(22)-C(2)	111.3(5)
O(21)-P(21)-C(51)	110.0(5)	O(22)-P(22)-C(71)	112.8(6)
O(21)-P(21)-C(61)	112.4(7)	O(22)-P(22)-C(81)	110.4(69)
C(2)-P(21)-C(51)	106.3(6)	C(2)-P(22)-C(71)	106.2(7)
C(2)-P(21)-C(61)	107.9(7)	C(2)-P(22)-C(81)	109.1(6)
C(51)-P(21)-C(61)	109.1(6)	C(871)-P(22)-C(81)	106.9(7)
Molecule III			
P(31)-O(31)	1.417(8)	P(32)-O(32)	1.500(9)
P(31)-C(3)	1.820(14)	P(32)-C(3)	1.786(17)
P(31)-C(91)	1.800(16)	P(32)-C(111)	1.779(12)
P(31)-C(101)	1.773(14)	P(32)-C(121)	1.819(13)
O(31)-P(31)-C(3)	113.8(7)	O(32)-P(32)-C(3)	111.5(5)
O(31)-P(31)-C(91)	104.2(6)	O(32)-P(32)-C(111)	112.2(5)
O(31)-P(31)-C(101)	109.7(6)	O(32)-P(32)-C(121)	108.8(6)
C(3)-P(31)-C(91)	104.2(6)	C(3)-P(32)-C(111)	106.6(7)
C(91)-P(31)-C(101)	111.0(6)	C(3)-P(32)-C(121)	107.4(6)
C(91)-P(31)-C(101)	108.1(8)	C(111-P(32)-C(121)	110.2(5)
P(31)-C(3)-P(32)	115.4(7)		

Table 4 Selected bond distances Å and angles (°) for CH₂(OPPh₂)₂ ligands.

of the distances is normal [P(12)-O(12) = 1.498(7) Å, P(32)-O(32) = 1.500(8) Å]and considerably shorter [P(11)-O(11) = 1.439(9)]the other is Å. P(31)-O(31) = 1.417(8) Å], the atoms O(11) and O(31) occupying the axial positions in the nickel(II) coordination gemometry. The disparity between the Ni-O and P-O distances could perhaps be explained by a high level of atom disorder. However, this is not the case here, as of all oxigen atoms, O(11) and O(31), have the lowest equivalent isotropic temperature factors, thus indicating that they are fixed in the structure. At this stage, the question is whether distortion is governed by a steric interactions with Ni(II) or by the π nature of the P-O bonds.

SUPPLEMENTARY MATERIAL

Further information on the structure solution as well as full list of atomic positions, anisotropic displacement factors, interatomic bond lengths and angles and observed and calculated structure factors are available from A.C. upon request.

Acknowledgements

We acknowledge a grant from the Dirección General de Investigación Científica y Técnica (project PB91-0787).

References

- 1. A. Castiñeiras, M.V. Paredes and W. Hiller, Acta Crystallogr., C40, 2078 (1984).
- 2. E. Bouwman, W.L. Driessen and J. Reedijk, Coord. Chem. Rev., 104, 143 (1990).
- 3. A. Castiñeiras, W. Hiller, J. Strähle, M.V. Paredes and J. Sordo, Acta Crystallogr., C41, 41 (1985); A. Castiñeiras, R. Carballo, W. Hiller and J. Strähle, Acta Crystallogr., C46, 1739 (1990); A. Castiñeiras, W. Hiller, J. Strähle, R. Carballo, M.R. Bermejo and M. Gayoso, Z. Naturforsch., 45b, 1267 (1990); R. Carballo and A. Castiñeiras, J. Cryst. Spect. Res., 23, 891 (1993).
- 4. A. Castiñeiras, R. Carballo, W. Hiller and J. Strähle, Z. Kristallogr., 193, 251 (1990); E. Bermejo, R. Carballo, A. Castiñeiras, A. Lombao, W. Hiller and J. Strähle, Polyhedron, 10, 1579 (1991).
- 5. R. Carballo, A. Castiñeiras, W. Hiller and J. Strähle, Polyhedron 12, 1083 (1993).
- 6. M.V. Paredes, Ph. D. Thesis, University of Santiago de Compostela, Spain (1992).
- 7. E. Bermejo, A. Castiñeiras, R. Dominguez, W. Hiller and J. Strähle, Abstracts of the 14-ECM, Enschede, The Netherlands, 135 (1992).
- 8. B. Delavaux, B. Chaudret, F. Dahan and R. Pollblanc, Organometallics, 4, 935 (1985).
- 9. B. Chaudret, F. Dahan and S. Sabo, Organometallics, 4, 1490 (1985).
- 10. M.O. Albers, D.C. Liles, D.J. Robinson and E. Singleton, Organometallics, 6, 2179 (1987).
- 11. N. Van Order Jr., W.E. Geiger, T.E. Bitterwolf and A.L. rheingold, J. Am. Chem. Soc., 109, 5680 (1987).
- 12. P.A. Perez Lourido, Ms. Thesis, University of Santiago de Compostela, Spain (1994).
- 13. J.H. Worrell, J.J. Genova and T.D. DuBois, J. Inorg. Nucl. Chem., 40, 441 (1978).
- 14. E. Bermejo, A. Castiñeiras, R. Dominguez, J. Strähle and W. Hiller, Acta Crystallogr., C49, 324 (1993).
- 15. a) W. Hewertson, B.T. Kilbourn and R.H.B. Mais, J. Chem Soc., Chem. Commun., 952 (1970); b) E.I. Sinyavskaya and Z.A. Sheka, Russ. J. Inorg. Chem., 16, 477 (1971); c) P. Planinic and H. Meider, Polyhedron, 8, 627 (1989).
- 16. a) F. Mani and M. Bacci, Inorg. Chim. Acta, 6, 487 (1972); b) W.E. Slinkard and D.W. Meek, J. Chem. Soc., Dalton, 1024 (1973); c) C.R. White and M.D. Joesten, J. Inorg. Nucl. Chem., 38, 2173 (1976).
- 17. C. Ercolani, J.V. Ouagliano and L.M. Vallarino, Inorg. Chim. Acta, 7, 413 (1973).
- 18. M.Yu. Antipin, Yu.T. Struchkov, S.A. Pisareva, T.Ya. Medved' and M.I. Kabachnick, Zh. Strukt. Khim., 21, 101 (1980).
- 19. S. Dondi, M. Nardelli, C. Pelizzi, G. Pelizzi and G Predieri, J. Organomet. Chem., 308, 195 (1986).
- 20. G. Pelizzi, P. Tarasconi, F. Vitali and C. Pelizzi, Acta Crystallogr., C43, 1505 (1987). 21. S.A. Sangokoya, B. Lee, M.F. Self, W.T. Pennington and G.H. Robinson, Polyhedron, 8, 1497 (1989)
- 22. K.B. Yatsimirskii, Yu. T. Struchkov, A.S. Batsanov and E.I. Sinyavskaya, Koord. Khim., 11, 826 (1985).
- 23. A.E. Kalinin, V.G. Andrianov and Yu.T. Struchkov, Zh. Strukt. Khim., 17, 153 (1976).
- 24. B.A. Frenz, The Enraf-Nonius CAD4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution: In *Computing in Crystallography*, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld and G.C. Bassi, (Delft Univ. Press, The Netherlands, 1985), pp. 64-71.
- 25. N. Walker and D. Stuart, Acta Crystallogr., A39 158 (1983).
- 26. G.M. Sheldrick, SHELXS86. Program for the solution of crystal structures (Univ. of Göttingen, Germany, 1986).
- 27. W.H. Zachariasen, Acta Crystallogr., 16, 1139 (1963).
- 28. International Tables for X-ray Crystallography, Vol. IV, (Kynoch Press, Birmingham, 1984), Present distributor: Kluwer Academic Publishers, Dordrecht.
- 29. E. Keller, SCHAKAL: Program for plotting molecular and crystal structures, (Univ. of Freiburg, Germany, 1988).

E. BERMEJO et al.

- 30. L. 'Kaden, B. Lorenz, R. Kirmse, J. Stach, H. Behm, P.T. Beurskens and U. Abram, Inorg. Chim. Acta, 169, 43 (1990). 31. R. Hübener and U. Abram, Inorg. Chimica Acta, 211, 121 (1993).
- 32. W. Duax and D.A. Norton, Atlas of Steroid Structure, (Plenum, New York, 1975).
- 33. A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson and R. Taylor, J. Chem. Soc., Dalton, S1 (1989).